- 1. This question is about organic compounds containing nitrogen.
 - (a) Sodium cyanide, NaCN, can be reacted with many organic compounds to increase the length of a carbon chain.
 - (i) 1-Chloropropane, CH₃CH₂CH₂C*l*, reacts with ethanolic sodium cyanide by nucleophilic substitution.

Outline the mechanism for this reaction.

Include curly arrows, relevant dipoles and the structure of the organic product.

(ii) Compound **G** is used to synthesise compounds **H** and **I** as shown in the flowchart below.

Complete the flowchart showing the structure of compound **G** and the **formulae** of the reagents for **Reaction 2** and **Reaction 3**.

(iii)	Compound H reacts with dilute hydrochloric acid to form a salt.	
	Explain why compound H can react with dilute hydrochloric acid and suggest a structor for the salt formed.	ture
	Explanation	
	Structure	
		[2]
(iv)	Compound I is the monomer for the biodegradable polymer J .	
	Draw two repeat units of polymer J and suggest a reason why it is biodegradable.	
		[3]

© OCR 2017 Turn over

(b) The repeat unit of Nylon 6,6 is shown below.

(i) Draw the structures of **two** monomers that can be used to form Nylon 6,6.

[2]

(ii) A sample of Nylon 6,6 has a relative molecular mass of 21500.

Estimate the number of repeat units in the sample.

Give your answer as a **whole** number.

number of repeat units =[1]

2. The repeat unit of a polymer is shown below.

Which monomers could form this polymer?

A	НО	НО
В	НО	ОНООНО
С	НО	но он
D	но он	НО

Your answer	

- 3. This question is about benzene.
 - (a) Over time, the Kekulé and delocalised models have been used to describe the bonding and structure of a benzene molecule.
 - (i) Describe, in terms of orbital overlap, the similarities and differences between the bonding in the Kekulé model and the delocalised model of benzene.

	[3]
(ii)	Experimental evidence led to the general acceptance of the delocalised model over the Kekulé model.
	Describe two pieces of evidence to support the delocalised model of benzene.
19	[2]

(b) Benzene can be used as the starting material for the synthesis of compounds **D** and **E**, shown below.

In the diagrams $\mathrm{C_6H_5}$ is a phenyl group.

Compounds **D** and **E** can be converted into polymers

501	Sompounds B and E can be converted into polymers.				
(i)	Draw two repeat units of these polymers.				
	Two repeat units of polymer formed from D				
	Two repeat units of polymer formed from E				
		[3]			
(ii)	State the type of polymer formed from compounds D and E .				
	From compound D				
	From compound E	[1]			

© OCR 2019 Turn over

(iii) In the synthesis of compounds **D** and **E**, benzene is first reacted with ethanoyl chloride, CH₃COC*l*, to form phenylethanone, shown below.

phenylethanone

The reaction takes place in the presence of aluminium chloride, $AlCl_3$, which acts as a catalyst.

In the mechanism for this reaction,

- ethanoyl chloride first reacts with aluminium chloride to form the CH₃–C⁺=O cation
- the CH₃-C⁺=O cation then behaves as an electrophile.

Complete the mechanism for the reaction.

Include equations to show the role of the $AlCl_3$ catalyst, relevant curly arrows and the structure of the intermediate.

Formation of electrophile

Regeneration of catalyst

(iv) Complete the flowchart for the synthesis of compounds **D** and **E** from phenylethanone.

4.	Alcohols can	be used to	prepare organi	c compounds with	different functional	aroups
	Alconois can		propare organi	o compounds with	uniciciti functional	groups.

((a)	HO(CH _a)	.OH can	be oxidised	to form	HOOC	$(CH_a)_a$	HOOO.
۱	(u	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		DC ONIGIOCG	to lollil	11000	(0) 19/	

(i)	State the reagents and conditions and write an equation for this oxidation.
	In the equation, use [O] for the oxidising agent.
	Reagents and conditions:
	Equation:

[3]

(ii) $HOOC(CH_2)_2COOH$ is soluble in water.

Explain, using a labelled diagram, why $\mathsf{HOOC}(\mathsf{CH}_2)_2\mathsf{COOH}$ is soluble in water.

- **(b)** HOOC(CH₂)₂COOH and HO(CH₂)₄OH react together to form polymer **E**.
 - (i) Draw one repeat unit of polymer E.

The functional groups should be clearly displayed.

[2]

(ii) Governments are encouraging the development of biodegradable polymers to reduce dependency on persistent plastic waste derived from fossil fuels.

Polymer **E** is a biodegradable polymer.

Suggest why polymer **E** is able to biodegrade.

(iii) A large yield of polymer **E** can be obtained by reacting a diacyl dichloride with $HO(CH_2)_4OH$.

The diacyl dichloride is prepared from HOOC(CH₂)₂COOH.

Complete the equation for the formation of a diacyl dichloride from $HOOC(CH_2)_2COOH$.

[3]